A Cayley graphs for Symmtric group on Degree four

S.VIJAYAKUMAR ${ }^{\dagger} \quad$ C.V.R.HARINARAYANAN ${ }^{\ddagger}$
${ }^{\dagger}$ Research Scholar, Department of Mathematics, PRIST University, Thanjavur,Tamilnadu, India.
\ddagger Research Supervisor, Assistant Professor,Department of Mathematics, Government Arts College, Paramakudi,Tamilnadu,India.

July 12, 2016

Abstract

In this paper, we determine all of subgroups of symmetric group S_{4}. First, we observe the multiplication table of S_{4}, then we determine all possibilities of every subgroup of order n, with n is the factor of order S_{4}. We found 30 subgroups of S_{4}. The diagram of Cayley graphs of S_{4} is then presented.

Keywords

Perumutation - symmetric Group - Cayley graph.

1 Introduction

For an arbitrary nonempty set S, define $A(S)$ to be the set of all one-to-one mapping of the set S onto itself. The set $A(S)$ with composition function operation is a group.If the set S contains n elements, then group $A(S)$ are denoted by S_{n}. Group S_{n} has n ! elements and will be called the symmetric group. There are many references on subgroups of S_{2} and S_{3}. In this paper, we determine all subgroups of S_{4} and then draw diagram of Cayley graphs of S_{4}.

The number of subgroup of cyclic groups of order p^{n} where p is a prime number and this subgroups are finite cyclic groups. The subgroups of non abelian symmetric groups are S_{2}, S_{3}, S_{4} and etc.

Therefore,the result of this paper, that is a diagram of cayley graphs of S_{4} is very important to determine the number of subgroup of S_{4}.

2 Preliminary

Definition 2.1

A nonempty subset H of a group G is said to be a subgroupof G if, under the product in G, H itself forms a group.

Theorem 2.2

If G is a finite group and H is a sub-group of G, then order of H is a divisor of order G.

Theorem 2.3

If G is a finite group and $a \in G$, then order of a is a divisor of order G.

Theorem 2.4
Let G be a finite group and let $|G|=p^{n} m$ where $n \geq 1, p$ is a prime number and $(p, m)=1$. Then G contains a subgroup of order p^{i} for each i where $1 \leq i \leq n$.

Definition 2.5

Let G be a finite group and let $|G|=p^{n} m$ where $n \geq 1, p$ is a prime number and $(p, m)=1$. The subgroup of G of order p^{n} is called the sylow p subgroup of G.

Theorem 2.6

Let G be a finite group and let $|G|=p^{n} m$ where $n \geq 1, p$ is a prime number and $(p, m)=1$. Then the number of Sylow p subgroup is of the form $(1+k p)$, where k is a non-negative integer, and $(1+k p)$ divides the order of G.

Definition 2.7

A subgroup N of G is said to be a normal subgroup of G if for every $g \in G$ and $n \in N$, $g n g^{-1} \in N$.

Theorem 2.8

There is a unique Sylow p-subgroup of the finite group G if only if it is normal.

Theorem 2.9

Let G be a group of order $p q$, where p and q are distinct primes and $p<q$. Then G has only one subgroup of order q. This subgroup of order q is normal in G.

3 Elements of Symmtric group

Let $A=\{1,2,3,4\}$ Then S_{4} consists of
$e=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4\end{array}\right), P_{01}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3\end{array}\right), P_{02}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2\end{array}\right), P_{03}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4\end{array}\right)$, $P_{04}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3\end{array}\right), P_{05}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2\end{array}\right), P_{06}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{array}\right), P_{07}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3\end{array}\right)$,
$P_{08}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2\end{array}\right), P_{09}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4\end{array}\right), P_{10}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3\end{array}\right), P_{11}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2\end{array}\right)$,
$P_{12}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right), P_{13}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2\end{array}\right), P_{14}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2\end{array}\right), P_{15}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4\end{array}\right)$,
$P_{16}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3\end{array}\right), P_{17}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2\end{array}\right), P_{18}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1\end{array}\right), P_{19}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1\end{array}\right)$,
$P_{20}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1\end{array}\right), P_{21}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1\end{array}\right), P_{22}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1\end{array}\right), P_{23}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1\end{array}\right)$.
In this group e is the identity element.
Thus S_{4} is a group containing $4!=24$ elements.

4 Cayley Table

$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\sim}$	\sim_{\sim}°	$\stackrel{\sim}{\sim}$	$\sim^{\text {N }}$	\bigcirc	Sa^{-7}	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{2}$	AT	$\sim^{\text {N }}$	A	2^{28}	$\stackrel{\square}{2}$	2°	\sim^{∞}	$\sim_{\text {－}}$	2°	\sim°	8	Q^{2}	$\stackrel{10}{2}$	${ }^{8}$	2°	\cup
$\sim^{\text {N }}$	$\sim^{\text {N }}$	$\mathrm{N}^{\text {N }}$	\sim_{1}°	\sim_{\sim}^{\sim}	$\stackrel{\square}{\square}$	S°	\sim^{-1}	$\mathrm{N}_{\substack{\text { ® }}}$	\sim_{1}^{2}	$\stackrel{\infty}{\sim}$	2_{10}^{20}	\sim_{1}^{*}	$\sim^{\text {a }}$	\sim_{1}^{∞}	${ }^{1}$	R°	$\sim^{\text {N }}$	\sim^{-1}	2^{8}	\sim_{2}^{20}	R^{\sim}	\sim_{1}^{8}	0	\sim^{-1}
$\stackrel{\rightharpoonup}{\sim}$	\sim^{-1}	$\mathrm{N}^{\text {－}}$	$\stackrel{12}{12}^{-1}$	\sim°	\sim_{1}^{∞}	8^{8}	$\sim^{\text {N }}$	N^{\sim}	a^{\sim}	$\stackrel{2}{2}_{2}^{2}$	\circ°	\sim°	ค	$\stackrel{\square}{7}$	\square^{8}	\sim_{\sim}^{∞}	2^{18}	\bigcirc	2－	\sim°	α^{2}	$\stackrel{N}{0}_{1}$	2^{5}	2
\sim_{\sim}^{\sim}	$\sim^{\text {a }}$	$\stackrel{20}{12}^{-1}$	N^{4}	\sim^{-1}	8	\sim_{1}^{∞}	$\stackrel{\sim}{2}$	$\mathrm{ar}^{\text {a }}$	$\stackrel{\sim}{\sim}$	\underbrace{N}	$م^{\circ}$	$\sim^{\text {® }}$	$\stackrel{\text { a }}{\sim}$	\sim_{1}^{8}	2	$\stackrel{\sim}{n}_{\sim}^{n}$	\bigcirc	\sim_{1}^{18}	$\sim_{1}^{\text {No }}$	\sim_{\sim}^{\sim}	\sim_{1}°	\sim_{1}°	8	2
$\stackrel{\square}{\sim}$	$\stackrel{\sim}{2}^{\circ}$	\sim_{\sim}^{\sim}	\sim^{\sim}	\sim	2^{8}	2°	\sim°	$\stackrel{12}{19}_{-}^{1}$	α^{ϱ}	$\stackrel{\sim}{n}_{\sim}^{\infty}$	\bigcirc	\sim^{5}	\sim^{-7}	${ }^{8}$	$\stackrel{\imath}{2}$	2^{N}	\sim°	8	2^{∞}	®	$\stackrel{\sim}{\sim}$	a^{7}	$2{ }^{12}$	\sim_{1}°
$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	a^{\sim}	S°	${ }_{2}^{\circ}$	2^{8}	ค	Ω^{ϱ}	2^{29}	ค－	\sim^{5}	\bigcirc	2^{N}	$Q^{?}$	2^{8}	\sim^{-7}	$\sim_{1}^{\text {O }}$	2^{8}	N^{-}	$\stackrel{\sim}{\sim}$	$\mathrm{N}_{\sim}^{\text {\＃}}$	$\stackrel{1}{\circ}^{\infty}$	$\sim^{\text {N }}$	2^{18}
$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\sim_{\text {N }}$	N°	N^{\square}	2^{\cong}	\mathcal{L}^{\bullet}	Q_{1}^{Z}	\sim^{-7}	Q^{+}	2^{28}	$\stackrel{\infty}{\sim^{\circ}}$	Q^{\Re}	Q^{∞}	\AA°	2^{5}	\sim_{1}°	$\stackrel{2}{2}$	$2^{\hat{a}}$	2_{1}^{2-2}	2_{1}°	2^{8}	\bigcirc	\sim_{1}^{8}	N^{\sim}
－1－1	\sim_{\sim}^{\sim}	คั	$\stackrel{\square}{7}$	\approx	2^{N}	$\stackrel{\wedge}{2}$	α^{2}	$\stackrel{\infty}{\sim}$	2^{18}	R^{2}	$\sim^{\text {a }}$	－	2°	$\stackrel{2}{2}_{2}^{2}$	2°	8^{5}	$\stackrel{\sim}{1}^{\circ}$	2^{∞}	\sim^{N}	2°	\bigcirc	L°	\square_{1}^{2}	$\stackrel{12}{2}$
$\stackrel{20}{2}$	$\stackrel{20}{20}^{2}$	$\sim^{\text {N }}$	$\stackrel{1}{2}_{\infty}^{\infty}$	1°	$\sim^{\text {a }}$	$\mathbb{N}^{\mathbb{2}}$	Ω^{N}	$\stackrel{\Omega}{2}$	0°	2°	2^{N}	$\stackrel{N}{2}$	0^{8}	$\stackrel{L}{1}_{\infty}^{\infty}$	2^{18}	\bigcirc	ベャ	N^{-}	$\stackrel{\sim}{2}^{\circ}$	\hat{i}°	2^{5}	$\underbrace{\text { B }}$	α_{1}°	\sim_{-}°
$\stackrel{\square}{2}$	$\stackrel{4}{4}$	R^{\sim}	$\overbrace{}^{8}$	\sim^{∞}	2°	2^{29}	$\stackrel{\sim}{\sim}$	\AA^{N}	i°	0°	$\stackrel{\sim}{2}$	\sim_{\sim}^{\sim}	$\stackrel{\square}{7}$	$\stackrel{\sim}{C}_{\infty}^{\infty}$	\bigcirc	2^{18}	$\stackrel{\infty}{\sim}$	2^{8}	Q_{1}°	Ω_{1}°	Q_{1}^{+}	2^{5}	$\sim^{\text {N }}$	\sim_{2}^{2}
\sim_{\sim}^{2}	2^{\Re}	$\stackrel{\sim}{1}^{\infty}$	2_{1}^{8}	2°	2^{2}	\sim^{N}	α_{1}°	\AA^{\sim}	\bigcirc	\sim^{5}	－	2^{29}	Q°	2^{N}	2°	\sim^{8}	\sim^{-1}	2^{8}	$\stackrel{\sim}{2}$	$\stackrel{N}{7}^{-}$	2^{20}	\sim°	L^{∞}	N^{-7}
$\stackrel{\sim}{\sim}$	\mathcal{N}^{N}	2^{2}	2°	2°	$\stackrel{\sim}{n}^{\infty}$	2^{2}	2^{2-2}	\AA°	2^{5}	0	คั	Q_{1}^{\bullet}	R_{1}^{8}	2^{-1}	8	1°	$\sim^{\text {N }}$	Q°	\mathcal{N}^{T}	2^{∞}	$\stackrel{\circ}{\circ}^{\circ}$	2^{20}	$\stackrel{\square}{7}$	$\stackrel{\sim}{\sim}$
$\stackrel{\square}{2}$	$\stackrel{\square}{\square}$	S°	$\sim^{\text {N }}$	N^{\sim}	Q^{ϱ}	2^{\cong}	2^{28}	Q^{+}	\sim^{-1}	$\stackrel{\text { a }}{\substack{\text { a }}}$	2^{\Re}	$\stackrel{\infty}{\sim^{\prime}}$	\mathcal{L}°	\square^{3}	2°	2^{∞}	2°	$\stackrel{2}{2}_{2}^{2}$	0	2°	${ }^{\circ}$	2^{20}	$\mathrm{a}^{\text {N }}$	2^{8}
\bigcirc	S_{1}°	$\stackrel{\square}{\square}$	คั	R°	$\xrightarrow{\sim}$	$\stackrel{\sim}{*}^{\text {N }}$	ค $\sim^{\text {T }}$	2^{28}	$\stackrel{\infty}{\sim}$	α^{\Re}	Q^{T}	\sim^{-1}	0^{5}	\sim°	$\stackrel{\Omega}{2}$	No	\sim_{1}^{∞}	$\stackrel{\sim}{2}^{\text {a }}$	2°	0	2°	$\mathrm{\sim}^{\sim}$	2^{20}	2^{8}
8	$\overbrace{1}^{8}$	\sim_{1}^{∞}	$\sim^{\text {a }}$	$\stackrel{L 0}{2}^{20}$	$\stackrel{\square}{\text { a }}$	$\sim^{\text {a }}$	\sim°	2°	2^{2}	\sim^{N}	A^{-}	$\sim^{\text {N }}$	\bigcirc	2^{28}	$\stackrel{\infty}{\sim}$	\sim_{1}°	N^{7}		2	2	\sim_{1}°	$\stackrel{\sim}{2}_{\sim}^{2}$	\sim_{1}°	2－
\sim_{1}^{∞}	\sim_{1}^{∞}	8^{8}	$\mathrm{R}^{\text {N }}$	N^{-1}	2^{20}	2°	\sim°	$م^{\circ}$	\underbrace{N}	$\stackrel{N}{2}$	\sim^{\sim}	$\stackrel{R}{2}_{2}^{2}$	2^{28}	\bigcirc	$\stackrel{\sim}{\sim}_{\sim}^{\sim}$	\approx	\mathcal{R}^{8}	\sim_{1}^{∞}	2	$Q^{\text {Z }}$	Q_{1}°	\sim°	2^{\Re}	20
\sim°	\sim_{0}°	$)^{\circ}$	\sim_{-}^{∞}	$\stackrel{N}{2}^{\Re}$	\mathcal{N}^{N}	2^{2}	2°	\bigcirc	คัก	Q^{ϱ}	$\stackrel{10}{2}$	\sim°	$\sim^{\text {a }}$	\sim°	$\sim^{\text {N }}$	N°	2^{8}	$\mathrm{R}^{\text {N }}$	2°	2^{28}	$\stackrel{7}{7}$	N^{\sim}	$\stackrel{\sim}{\sim}$	2_{1}^{+}
$\overbrace{8}^{8}$	\sim_{1}^{8}	\sim_{1}^{N}	F°	R^{\sim}	2^{\Re}	$\stackrel{\infty}{\sim^{\prime}}$	\bigcirc	2^{5}	\sim_{\sim}^{\sim}	2^{20}	Sa°	$\sim^{\text {N }}$	L°	$\sim_{1}^{\text {OH }}$	$\sim^{\text {a }}$	\square^{8}	－	$\sim^{\text {N }}$	2^{28}	\sim_{1}°	\sim_{1}^{∞}	$\mathrm{N}_{\sim}^{\text {＋}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{2}$
\sim^{20}	2^{10}	\sim^{8}	\sim°	2°	\sim^{5}	\bigcirc	$\stackrel{\square}{\square}$	Q°	1_{1}^{8}	\sim_{1}^{∞}	2^{+}	8^{8}	N^{\sim}	\sim_{\sim}°	$\stackrel{12}{12}^{-1}$	$\mathrm{N}^{\text {＋}}$	$\stackrel{\sim}{2}_{1}^{2}$	a^{\sim}	\sim^{\sim}	$\sim^{\text {N }}$	R^{-1}	\sim°	2	$\xrightarrow[\sim]{\infty}$
A	\sim^{8}	2^{20}	\bigcirc	2^{5}	\sim_{1}°	\sim°	Q_{1}°	N^{-7}	\sim°	$\sim^{\text {a }}$	\sim_{1}^{∞}	8^{8}	\wedge_{1}^{∞}	$\stackrel{\sim}{\sim}$	\sim^{N}	\sim_{1}^{2}	\hat{L}_{1}^{+1}	2^{29}	2^{N}	$\sim^{\text {® }}$	$\stackrel{\sim}{2}^{\infty}$	\sim_{-}^{2}	\sim°	2^{-1}
\sim_{0}°	\sim_{1}°	$\sim_{1}^{\text {No }}$	2^{5}	\bigcirc	${ }_{2}^{12}$	\sim_{1}^{3}	${ }^{2}$	\sim_{1}^{∞}	${ }^{\circ}$	\sim_{1}^{8}	$\stackrel{\square}{\square}$	Q_{1}°	2^{20}	N_{1}^{J}	$\stackrel{N}{2}^{2}$	\mathcal{N}^{N}	$\stackrel{\wedge}{\approx}$	$\stackrel{\sim}{2}^{\circ}$	$2^{\text {N }}$	\sim°	\sim_{1}^{2}	\sim_{\square}^{∞}	คั	$\sim^{\text {N }}$
ค $\sim^{\text {O}}$	$\sim_{1}^{\text {º }}$	2°	$\sim_{1}^{\text {O }}$	2^{10}	\bigcirc	\sim^{-1}	\sim_{1}^{∞}	2°	Q_{1}°	2	2°	${ }_{2}^{\circ}$	N^{-7}	2^{20}	$\stackrel{L}{1}^{\bigoplus}$	N^{\sim}	\mathcal{N}^{N}	2^{-2}	\sim°	2^{-}	\sim_{\sim}^{\sim}	คั	\sim^{∞}	$\stackrel{\sim}{2}$
8	8	0	2_{10}^{20}	$\mathrm{R}^{\text {O }}$	2°	2°	${ }^{\circ}$	2°	$\stackrel{\square}{7}$	Q_{i}	2^{8}	$\stackrel{1}{2}^{\infty}$	$\stackrel{N}{2}^{\cong}$	\sim^{N}	\approx	\mathcal{L}^{\bigoplus}	2^{20}	$\stackrel{\square}{\square}$	$\stackrel{N}{2}^{2}$	$\stackrel{\infty}{-}$	\sim^{\sim}	$\stackrel{\sim}{*}^{\text {N }}$	\sim^{-1}	\sim_{2}°
\bigcirc	\bigcirc	0^{-3}	$\sim^{\text {N }}$	2^{8}	i^{+}	2^{28}	Q^{8}	$\hat{R}^{\hat{2}}$	$\stackrel{\circ}{1}^{\infty}$	2°	$\imath^{?}$	$\stackrel{7}{7}$	N^{N}	Q^{\cong}	$\mathrm{N}_{1}^{\mathbb{T}}$	2^{29}	\mathcal{L}^{\approx}	$\stackrel{\sim}{1}$	$\stackrel{L}{1}^{\infty}$	$\stackrel{2}{2}^{2}$	\sim°	2^{-7}	$\sim^{\text {N }}$	คั
\bigcirc	0	8	$\sim^{\text {® }}$	\sim°	－	2^{88}	${ }^{8}$	R_{i}°	2^{∞}	Q_{1}^{8}	Q_{1}°	Q_{1}^{7}	$\stackrel{N}{2}_{2}^{2}$	$\stackrel{2}{2}_{\square}^{2}$	$\stackrel{L}{1}_{\mathbb{Z}}$	2_{1}^{29}	$\stackrel{\sim}{1}^{\oplus}$	$\stackrel{\wedge}{\approx}$	$\stackrel{\infty}{\sim_{1}^{\prime}}$	$\stackrel{\Omega}{2}$	$\stackrel{\sim}{2}^{\circ}$	N^{\sim}	$\sim^{\text {N }}$	$\stackrel{\sim}{\sim}$

5 Subgroups

According to the nontrivial subgroups of S_{4} must have order $2,4,6,8$ or 12 . We will determine all of the subgroups of S_{4}. Clearly, the subgroup of S_{4} of order 1 is the trivial subgroup $H_{1}=\{e\}$.

Subgroups of order 2:

Let H be an arbitrary subgroup of S_{4} of order 2 . Since 2 is a prime number, then H is cyclic. Therefore H is generated by an element of S_{4} of order 2 . Thus, all subgroups of S_{4} of order 2 are $H_{2}=\left\{e, P_{01}\right\}, H_{3}=\left\{e, P_{03}\right\}, H_{4}=\left\{e, P_{05}\right\}, H_{5}=\left\{e, P_{06}\right\}, H_{6}=\left\{e, P_{07}\right\}$, $H_{7}=\left\{e, P_{14}\right\}, H_{8}=\left\{e, P_{15}\right\}, H_{9}=\left\{e, P_{22}\right\}, H_{10}=\left\{e, P_{23}\right\}$.

Subgroups of order 3:

The subgroups of S_{4} of order 3 is generated by an element of S_{4} of order 3. Thus, all subgroups of S_{4} of order 3 are $H_{11}=\left\{e, P_{02}, P_{04}\right\}, H_{12}=\left\{e, P_{08}, P_{13}\right\}, H_{13}=\left\{e, P_{09}, P_{12}\right\}$ $H_{14}=\left\{e, P_{10}, P_{19}\right\}, H_{15}=\left\{e, P_{11}, P_{18}\right\}, H_{16}=\left\{e, P_{16}, P_{20}\right\}, H_{17}=\left\{e, P_{17}, P_{21}\right\}$.

Subgroups of order 4:

Let H be an arbitrary subgroup of S_{4} of order 4 . then H is cyclic. Therefore H is generated by an element of S_{4} of order 4. Thus,all subgroups of S_{4} of order 4 are $H_{18}=$ $\left\{e, P_{01}, P_{06}, P_{07}\right\}, H_{19}=\left\{e, P_{03}, P_{22}, P_{23}\right\}, H_{20}=\left\{e, P_{05}, P_{14}, P_{15}\right\}, H_{21}=\left\{e, P_{07}, P_{14}, P_{22}\right\}$, $H_{22}=\left\{e, P_{07}, P_{17}, P_{21}\right\}, H_{23}=\left\{e, P_{08}, P_{13}, P_{22}\right\}, H_{24}=\left\{e, P_{10}, P_{14}, P_{19}\right\}$.

Subgroups of order 6:

Let H be an arbitrary subgroup of S_{4} of order 6 . then H is cyclic. Therefore H is generated by an element of S_{4} of order 6 . Thus, all subgroups of S_{4} of order 6 are $H_{25}=\left\{e, P_{01}, P_{02}, P_{03}, P_{04}, P_{05}\right\}, H_{26}=\left\{e, P_{01}, P_{15}, P_{16}, P_{20}, P_{23}\right\}$.

Subgroups of order 8:

Let H be an arbitrary subgroup of S_{4} of order 8 . then H is cyclic. Therefore H is generated by an element of S_{4} of order 8. Thus, all subgroups of S_{4} of order 8 are

$$
\begin{aligned}
& H_{27}=\left\{e, P_{01}, P_{06}, P_{07}, P_{14}, P_{17}, P_{21}, P_{22}\right\}, H_{28}=\left\{e, P_{03}, P_{07}, P_{08}, P_{13}, P_{14}, P_{22}, P_{23}\right\}, \\
& H_{29}=\left\{e, P_{05}, P_{07}, P_{10}, P_{14}, P_{15}, P_{19}, P_{22}\right\} .
\end{aligned}
$$

Subgroups of order 12:

Obviously the alternating group
$A_{4}=H_{30}=\left\{e, P_{02}, P_{04}, P_{07}, P_{09}, P_{11}, P_{12}, P_{14}, P_{16}, P_{18}, P_{20}, P_{22}\right\}$. is a subgroup of S_{4} of order 12. We will prove that A_{4} is the unique subgroup of S_{4} of order 12 .
According to this result, we have the diagram of cayley graphs diagram is figure 1 below.

Figure 1: Cayley graphs of S_{4}

References

[1] I.N.Herstein. "Topic in Algebra", (John Wiley and Sons,New York,1975).
[2] J.B.Fraleigh. "A First Course in Abstract Algebra", (AddisonWesley,London,1992).

