A Cayley graphs for Symmtric group on Degree four

 $S.VIJAYAKUMAR^{\dagger}$ $C.V.R.HARINARAYANAN^{\ddagger}$

[†] Research Scholar, Department of Mathematics, PRIST University,

Thanjavur, Tamilnadu, India.

[‡] Research Supervisor, Assistant Professor, Department of Mathematics, Government Arts College, Paramakudi, Tamilnadu, India.

July 12, 2016

Abstract

In this paper, we determine all of subgroups of symmetric group S_4 . First, we observe the multiplication table of S_4 , then we determine all possibilities of every subgroup of order n, with n is the factor of order S_4 . We found 30 subgroups of S_4 . The diagram of Cayley graphs of S_4 is then presented.

Keywords

Perumutation - symmetric Group - Cayley graph.

1 Introduction

For an arbitrary nonempty set S, define A(S) to be the set of all one-to-one mapping of the set S onto itself. The set A(S) with composition function operation is a group. If the set S contains n elements, then group A(S) are denoted by S_n . Group S_n has n!elements and will be called the symmetric group. There are many references on subgroups of S_2 and S_3 . In this paper, we determine all subgroups of S_4 and then draw diagram of Cayley graphs of S_4 .

The number of subgroup of cyclic groups of order p^n where p is a prime number and this subgroups are finite cyclic groups. The subgroups of non abelian symmetric groups are S_2, S_3, S_4 and etc. Therefore, the result of this paper, that is a diagram of cayley graphs of S_4 is very important to determine the number of subgroup of S_4 .

2 Preliminary

Definition 2.1

A nonempty subset H of a group G is said to be a subgroup of G if, under the product in G, H itself forms a group.

Theorem 2.2

If G is a finite group and H is a sub-group of G, then order of H is a divisor of order G.

Theorem 2.3

If G is a finite group and $a \in G$, then order of a is a divisor of order G.

Theorem 2.4

Let G be a finite group and let $|G| = p^n m$ where $n \ge 1, p$ is a prime number and (p, m) = 1. Then G contains a subgroup of order p^i for each i where $1 \le i \le n$.

Definition 2.5

Let G be a finite group and let $|G| = p^n m$ where $n \ge 1, p$ is a prime number and (p, m) = 1. The subgroup of G of order p^n is called the sylow p subgroup of G.

Theorem 2.6

Let G be a finite group and let $|G| = p^n m$ where $n \ge 1, p$ is a prime number and (p, m) = 1. Then the number of Sylow p subgroup is of the form (1 + kp), where k is a non-negative integer, and (1 + kp) divides the order of G.

Definition 2.7

A subgroup N of G is said to be a normal subgroup of G if for every $g \in G$ and $n \in N$, $gng^{-1} \in N$.

Theorem 2.8

There is a unique Sylow p -subgroup of the finite group G if only if it is normal.

Theorem 2.9

Let G be a group of order pq, where p and q are distinct primes and p < q. Then G has only one subgroup of order q. This subgroup of order q is normal in G.

3 Elements of Symmtric group

Let
$$A = \{1, 2, 3, 4\}$$
 Then S_4 consists of
 $e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$, $P_{01} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix}$, $P_{02} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}$, $P_{03} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$,
 $P_{04} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 3 \end{pmatrix}$, $P_{05} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$, $P_{06} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4 \end{pmatrix}$, $P_{07} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix}$,
 $P_{08} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$, $P_{09} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{pmatrix}$, $P_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$, $P_{11} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix}$,
 $P_{12} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{pmatrix}$, $P_{13} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 2 \end{pmatrix}$, $P_{14} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$, $P_{15} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$,
 $P_{16} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{pmatrix}$, $P_{17} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$, $P_{18} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 3 & 1 \end{pmatrix}$, $P_{19} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$,
 $P_{20} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$, $P_{21} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$, $P_{22} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix}$, $P_{23} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$.
In this group e is the identity element.

Thus S_4 is a group containing 4! = 24 elements.

4 Cayley Table

	0																							
P_{23}	P_{23}	P_{16}	P_{17}	P_{22}	P_{10}	P_{11}	P_{18}	P_{13}	P_{14}	P_{21}	P_{04}	P_{05}	P_{19}	P_{07}	P_{08}	P_{20}	P_{01}	P_{02}	P_{06}	P_{12}	P_{15}	P_{09}	P_{03}	е
P_{22}	P_{22}	P_{17}	P_{16}	P_{23}	P_{11}	P_{10}	P_{21}	P_{14}	P_{13}	P_{18}	P_{05}	P_{04}	P_{20}	P_{08}	P_{07}	P_{19}	P_{02}	P_{01}	P_{09}	P_{15}	P_{12}	P_{06}	е	P_{01}
P_{21}	P_{21}	P_{14}	P_{15}	P_{20}	P_{08}	P_{09}	P_{22}	P_{17}	P_{12}	P_{19}	P_{02}	P_{03}	P_{23}	P_{11}	P_{06}	P_{18}	P_{05}	е	P_{10}	P_{16}	P_{13}	P_{07}	P_{01}	P_{04}
P_{20}	P_{20}	P_{15}	P_{14}	P_{21}	P_{09}	P_{08}	P_{19}	P_{12}	P_{17}	P_{22}	P_{03}	P_{02}	P_{18}	P_{06}	P_{11}	P_{23}	в	P_{05}	P_{07}	P_{13}	P_{16}	P_{10}	P_{04}	P_{01}
P_{19}	P_{19}	P_{12}	P_{13}	P_{18}	P_{06}	P_{07}	P_{20}	P_{15}	P_{16}	P_{23}	в	P_{01}	P_{21}	P_{09}	P_{10}	P_{22}	P_{03}	P_{04}	P_{08}	P_{14}	P_{17}	P_{11}	P_{05}	P_{02}
P_{18}	P_{18}	P_{13}	P_{12}	P_{19}	P_{07}	P_{06}	P_{23}	P_{16}	P_{15}	P_{20}	P_{01}	е	P_{22}	P_{10}	P_{09}	P_{21}	P_{04}	P_{03}	P_{11}	P_{17}	P_{14}	P_{08}	P_{02}	P_{05}
P_{17}	P_{17}	P_{22}	P_{10}	P_{11}	P_{23}	P_{16}	P_{14}	P_{21}	P_{04}	P_{05}	P_{18}	P_{13}	P_{08}	P_{20}	P_{01}	P_{02}	P_{19}	P_{07}	P_{15}	P_{09}	P_{03}	е	P_{06}	P_{12}
P_{16}	P_{16}	P_{23}	P_{11}	P_{10}	P_{22}	P_{17}	P_{13}	P_{18}	P_{05}	P_{04}	P_{21}	P_{14}	P_{07}	P_{19}	P_{02}	P_{01}	P_{20}	P_{08}	P_{12}	P_{06}	е	P_{03}	P_{09}	P_{15}
P_{15}	P_{15}	P_{20}	P_{08}	P_{09}	P_{21}	P_{14}	P_{12}	P_{19}	P_{02}	P_{03}	P_{22}	P_{17}	P_{06}	P_{18}	P_{05}	е	P_{23}	P_{11}	P_{13}	P_{07}	P_{01}	P_{04}	P_{10}	P_{16}
P_{14}	P_{14}	P_{21}	P_{09}	P_{08}	P_{20}	P_{15}	P_{17}	P_{22}	P_{03}	P_{02}	P_{19}	P_{12}	P_{11}	P_{23}	e	P_{05}	P_{18}	P_{06}	P_{16}	P_{10}	P_{04}	P_{01}	P_{07}	P_{13}
P_{13}	P_{13}	P_{18}	P_{06}	P_{07}	P_{19}	P_{12}	P_{16}	P_{23}	e	P_{01}	P_{20}	P_{15}	P_{10}	P_{22}	P_{03}	P_{04}	P_{21}	P_{09}	P_{17}	P_{11}	P_{05}	P_{02}	P_{08}	P_{14}
P_{12}	P_{12}	P_{19}	P_{07}	P_{06}	P_{18}	P_{13}	P_{15}	P_{20}	P_{01}	в	P_{23}	P_{16}	P_{09}	P_{21}	P_{04}	P_{03}	P_{22}	P_{10}	P_{14}	P_{08}	P_{02}	P_{05}	P_{11}	P_{17}
P_{11}	P_{11}	P_{10}	P_{22}	P_{17}	P_{16}	P_{23}	P_{05}	P_{04}	P_{21}	P_{14}	P_{13}	P_{18}	P_{02}	P_{01}	P_{20}	P_{08}	P_{07}	P_{19}	е	P_{03}	P_{09}	P_{15}	P_{12}	P_{06}
P_{10}	P_{10}	P_{11}	P_{23}	P_{16}	P_{17}	P_{22}	P_{04}	P_{05}	P_{18}	P_{13}	P_{14}	P_{21}	P_{01}	P_{02}	P_{19}	P_{07}	P_{08}	P_{20}	P_{03}	e	P_{06}	P_{12}	P_{15}	P_{09}
P_{09}	P_{09}	P_{08}	P_{20}	P_{15}	P_{14}	P_{21}	P_{03}	P_{02}	P_{19}	P_{12}	P_{17}	P_{22}	е	P_{05}	P_{18}	P_{06}	P_{11}	P_{23}	P_{04}	P_{01}	P_{07}	P_{13}	P_{16}	P_{10}
P_{08}	P_{08}	P_{09}	P_{21}	P_{14}	P_{15}	P_{20}	P_{02}	P_{03}	P_{22}	P_{17}	P_{12}	P_{19}	P_{05}	е	P_{23}	P_{11}	P_{06}	P_{18}	P_{01}	P_{04}	P_{10}	P_{16}	P_{13}	P_{07}
P_{07}	P_{07}	P_{06}	P_{18}	P_{13}	P_{12}	P_{19}	P_{01}	е	P_{23}	P_{16}	P_{15}	P_{20}	P_{04}	P_{03}	P_{22}	P_{10}	P_{09}	P_{21}	P_{02}	P_{05}	P_{11}	P_{17}	P_{14}	P_{08}
P_{06}	P_{06}	P_{07}	P_{19}	P_{12}	P_{13}	P_{18}	e	P_{01}	P_{20}	P_{15}	P_{16}	P_{23}	P_{03}	P_{04}	P_{21}	P_{09}	P_{10}	P_{22}	P_{05}	P_{02}	P_{08}	P_{14}	P_{17}	P_{11}
P_{05}	P_{05}	P_{04}	P_{03}	P_{02}	P_{01}	е	P_{11}	P_{10}	P_{09}	P_{08}	P_{07}	P_{06}	P_{17}	P_{16}	P_{15}	P_{14}	P_{13}	P_{12}	P_{23}	P_{22}	P_{21}	P_{20}	P_{19}	P_{18}
P_{04}	P_{04}	P_{05}	е	P_{01}	P_{02}	P_{03}	P_{10}	P_{11}	P_{06}	P_{07}	P_{08}	P_{09}	P_{16}	P_{17}	P_{12}	P_{13}	P_{14}	P_{15}	P_{22}	P_{23}	P_{18}	P_{19}	P_{20}	P_{21}
P_{03}	P_{03}	P_{02}	P_{01}	е	P_{05}	P_{04}	P_{09}	P_{08}	P_{07}	P_{06}	P_{11}	P_{10}	P_{15}	P_{14}	P_{13}	P_{12}	P_{17}	P_{16}	P_{21}	P_{20}	P_{19}	P_{18}	P_{23}	P_{22}
P_{02}	P_{02}	P_{03}	P_{04}	P_{05}	е	P_{01}	P_{08}	P_{09}	P_{10}	P_{11}	P_{06}	P_{07}	P_{14}	P_{15}	P_{16}	P_{17}	P_{12}	P_{13}	P_{20}	P_{21}	P_{22}	P_{23}	P_{18}	P_{19}
P_{01}	P_{01}	е	P_{05}	P_{04}	P_{03}	P_{02}	P_{07}	P_{06}	P_{11}	P_{10}	P_{09}	P_{08}	P_{13}	P_{12}	P_{17}	P_{16}	P_{15}	P_{14}	P_{19}	P_{18}	P_{23}	P_{22}	P_{21}	P_{20}
e	е	P_{01}	P_{02}	P_{03}	P_{04}	P_{05}	P_{06}	P_{07}	P_{08}	P_{09}	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}	P_{17}	P_{18}	P_{19}	P_{20}	P_{21}	P_{22}	P_{23}
0	е	P_{01}	P_{02}	P_{03}	P_{04}	P_{05}	P_{06}	P_{07}	P_{08}	P_{09}	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}	P_{16}	P_{17}	P_{18}	P_{19}	P_{20}	P_{21}	P_{22}	P_{23}

IJSER © 2016 http://www.ijser.org

4

1513

5 Subgroups

According to the nontrivial subgroups of S_4 must have order 2, 4, 6, 8 or 12. We will determine all of the subgroups of S_4 . Clearly, the subgroup of S_4 of order 1 is the trivial subgroup $H_1 = \{e\}$.

Subgroups of order 2:

Let *H* be an arbitrary subgroup of S_4 of order 2. Since 2 is a prime number, then *H* is cyclic. Therefore *H* is generated by an element of S_4 of order 2. Thus, all subgroups of S_4 of order 2 are $H_2 = \{e, P_{01}\}, H_3 = \{e, P_{03}\}, H_4 = \{e, P_{05}\}, H_5 = \{e, P_{06}\}, H_6 = \{e, P_{07}\}, H_7 = \{e, P_{14}\}, H_8 = \{e, P_{15}\}, H_9 = \{e, P_{22}\}, H_{10} = \{e, P_{23}\}.$

Subgroups of order 3:

The subgroups of S_4 of order 3 is generated by an element of S_4 of order 3. Thus, all subgroups of S_4 of order 3 are $H_{11} = \{e, P_{02}, P_{04}\}, H_{12} = \{e, P_{08}, P_{13}\}, H_{13} = \{e, P_{09}, P_{12}\}$ $H_{14} = \{e, P_{10}, P_{19}\}, H_{15} = \{e, P_{11}, P_{18}\}, H_{16} = \{e, P_{16}, P_{20}\}, H_{17} = \{e, P_{17}, P_{21}\}.$

Subgroups of order 4:

Let *H* be an arbitrary subgroup of S_4 of order 4. then *H* is cyclic. Therefore *H* is generated by an element of S_4 of order 4. Thus, all subgroups of S_4 of order 4 are $H_{18} = \{e, P_{01}, P_{06}, P_{07}\}, H_{19} = \{e, P_{03}, P_{22}, P_{23}\}, H_{20} = \{e, P_{05}, P_{14}, P_{15}\}, H_{21} = \{e, P_{07}, P_{14}, P_{22}\}, H_{22} = \{e, P_{07}, P_{17}, P_{21}\}, H_{23} = \{e, P_{08}, P_{13}, P_{22}\}, H_{24} = \{e, P_{10}, P_{14}, P_{19}\}.$

Subgroups of order 6:

Let H be an arbitrary subgroup of S_4 of order 6. then H is cyclic. Therefore H is generated by an element of S_4 of order 6. Thus, all subgroups of S_4 of order 6 are $H_{25} = \{e, P_{01}, P_{02}, P_{03}, P_{04}, P_{05}\}, H_{26} = \{e, P_{01}, P_{15}, P_{16}, P_{20}, P_{23}\}.$

Subgroups of order 8:

Let H be an arbitrary subgroup of S_4 of order 8. then H is cyclic. Therefore H is generated by an element of S_4 of order 8. Thus, all subgroups of S_4 of order 8 are

$$H_{27} = \{e, P_{01}, P_{06}, P_{07}, P_{14}, P_{17}, P_{21}, P_{22}\}, H_{28} = \{e, P_{03}, P_{07}, P_{08}, P_{13}, P_{14}, P_{22}, P_{23}\}, H_{29} = \{e, P_{05}, P_{07}, P_{10}, P_{14}, P_{15}, P_{19}, P_{22}\}.$$

Subgroups of order 12:

Obviously the alternating group

 $A_4 = H_{30} = \{e, P_{02}, P_{04}, P_{07}, P_{09}, P_{11}, P_{12}, P_{14}, P_{16}, P_{18}, P_{20}, P_{22}\}$ is a subgroup of S_4 of order 12. We will prove that A_4 is the unique subgroup of S_4 of order 12.

According to this result, we have the diagram of cayley graphs diagram is figure 1 below.

Figure 1: Cayley graphs of S_4

References

- [1] I.N.Herstein. "Topic in Algebra", (John Wiley and Sons, New York, 1975).
- [2] J.B.Fraleigh. "A First Course in Abstract Algebra", (Addison-Wesley, London, 1992).